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ABSTRACT

-" A target must chooset a path between some origin and

destination. The total travel time and the target speed are

specified, and the target wishes to maximize the randomness'

of its track subject to the spatial and temporal constraints.

.Measures of effectiveness are developed against which the

Irandamness of any path-producing method can reasonably be

judged. Previous invest:igations into the scenario are

reviewed and two models are developed, one using a random

tour with drift and the other derived from Brownian motion.

Statistics generated by Monte Carlo simulations for both

models are compared. While the Brownian motion derived

-. process is not always under perfect control of the

"*-- constraints, if the timed arrival constraint may be slightly

violated then that process performs better against the

measures of effectiveness and is easier for a target to

execute than is the random tour with drift.

4

a.



TABLE OF CONTENTS

I. INTRODUCTION ------------------------------------- 9

II. MEASURES OF EFFECTIVENESS ------------------------ 11

III. PREVIOUS INVESTIGATIONS -------------------------- 26

IV. PROCEDURE ---------------------------------------- 29

A. RANDOM TOUR WITH DRIFT ----------------------- 29

B. BROI44IAN-DERIVED MOTION ----------------------- 35

V. RESULTS ------------------------------------------ 44

A. RAIDOM TOUR WITH DRIFT ---------------------- 44

B. BROWNIAN-DERIVED MOTION --------------------- 78

VI. CONCLUSIONS ------------------------------------- 98

LIST OF REFERENCES ------------------------------------- 109

* INITIAL DISTRIBUTION LIST ------------------------------ 111

5



LIST OF TABLES

1. Random Tour Statistics for Deviation Between
Present Course and Course from Present
Position to Destination -------------------------- 56

2. Mean Square Radial Distance from Baseline
Position at Time t for Random Tour with Drift ---- 66

3. Ratio of Left Clipped/Left Unclipped Mean
Square Radial Distance at Time t for
Random Tour with Drift --------------------------- 69

4. Mean Angle (and Standard Deviation) in Degrees
Between Present Course and Course from Present
Position to Destination for Brownian-derived
Motion (Three Values of Sigma Square) and
Random Tour with Drift --------------------------- 81

!I

E~ii6



LIST OF FIGURES

1. Pictorial Representation of Two Measures
of Effectiveness------------------------------------ 12

2. Water Velocity as a Composition of Drift
and Randomizing Velocities-------------------------- 38

3. Log Truncation and Extension-------------------------42

4. Random Tour with Drift------------------------------ 45

5. Effect of Drift on Course Distribution--------------54

6. Simulated Distribution of Course Deviations---------59

7. Redistribution of Courses After the
the Addition of Drift------------------------------- 62

8. Plot of Discrete Brownian-derived Motion------------71

91 Distribution of Course Deviations for
Brownian-derived Motio------------------------------ 83

18. Mean Square Radial Distance from------------------- 87
Baseline Postion

It1. Mean Square Radial Distance from------------------- 94
Baseline Position

12. Mean Square Radial Distance from--------------------181t
Baseline Position

7



-.. .. .. . ... . .... . . ..... .- '. ........... " ... " " ...

ACKNOIWL.EDGEMENT

I owe much to Bob McDonough and John Somnerer of the

Applied Physics Laboratory at Johns Hopkins. Bob arranged

for me to visit the lab for six weeks and John, whose idea

this thesis originally was, patiently followed my efforts and

made suggestions which allowed me to proceed to the next

hurdle on the course. I also thank Professors Dona.d Gaver

and James Eagle of the Naval Postgraduate School. As my

*advisor, Prof. Gaver suggested and derived the Brownian

bridge, as well as nudged me in the right direction when I

veered from course. A, co.-advisor, Prof. Eagle read my

thesis many times with great discrimination and suggested

several significant improvements. Finally, I thank my wife

-Marie for showing endless patience and understanding while I

thrashed my way through this project.

,4.

oa

°I



I. INTRODUCTION

This thesis will investigate two methods 4or constructing

random target tracks between two specified endpoints. The

target is constrained to begin its journey at one of the

points and end it at the other after a stated eiipsed time.

Furthermore, either the mean target speed or tne maximum and

minimum speeds will be specified.

SConsider the extreme case in which the distance between

the two endpoints, the target maximum speed, and the

specified elapsed time are such that the target is

constrained to travel directly to its destinitiop. Here

there can be no randomness to the path, and an attacker needs

very little target position information in order to make

perfect predictions about future target posi tiorn. Now

imagine a less constrained situation in which there is

considerably excess time. The target is able to travel

around randomly during most of the period. It might choose

to move quite randomly at the beginning, suadenly realizing

at some critical point that it has just enough time remaining

to travel directly to its destination. However, it is more

intuitively sensible in this controlled time of arrival

scenario to Ospread" the randomness and effects of the

constraints evenly across the time period.

;" 9
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The two scenarios above give insight about what

characteristics of target travel are important. In the

completely constrained case, the target's position does not

vary at all from its expected position, resulting in an

easily inferred position throughout the scenario.

Furthermore, the target always points direcly toward its

destination, as well as directly away from its origin. For a

target that wishes to keep its origin and destination secret

for some tactical reason, completely constrained travel is a

giveaway. On the other hand, a target that travels about in

an entirely random manner may never get to its destination.

It is clear that constrained target travel between two

endpoints involves many tradeoffs among various constraints

and choices. This thesis will develop a notion of

O randomness" by devising measures of effectiveness that

logically follow from the scenario and that also have strong

intuitive appeal. Some previous approaches to the problem

will be discussed briefly and then two new "recipes" for

target travel will be developed in detail and evaluated

against the measures of effectiveness adopted.

, ,° ..



I]. MEASURES OF EFFECTIVENESS

The previous scenario describing totally constrained

target travel made apparent two dangers to the evasive

target. First, the target risks divulging both its origin

and destination because it always points toward its

destination and away from its origin. It follows that the

less constrained a target is, the less it necessarily points

to destination and away from origin. Exactly how much course

freedom is gained as the target becomes less constrained will

be investigated in detail later. One might counter the

importance of this pointing by claiming that, at best, the

attacker obtains only a line of bearing to the origin or

destination. While true, this argument neglects the

possibility that other targets may pass the same way, with

the same origin or destination. Sooner or later the attacker

will get lines of bearing that cross with a regularity

sufficient to specify the critical positions. Since origins

and destinations might be important enough to be kept secret,

one reasonable measure of effectiveness against which to

evaluate any set of target paths is the absolute angle

between the target's present course and the course from the

target's position to its destination sampled at specified

time intervals (c.f., Figure Ia). For the totally

4 constrained target this angle will always be zero. In order

11
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to compare two different path generation procedures it will

be helpful to produce a plot of this measure against time if,

in fact, it is time dependent. Otherwise, it will oe useful

to calculate the mean pointing angle, its standard deviation,

* and perhaps an empirical density function.

The second undesirable quality of a completely

constrained path is that the target's position always falls

exactly on its baseline position, where baseline position

(P ) is defined as the point where the target would be &t anyt

time of its journey if it travelled directly to its

destination at a constant speed. For example, if the distance

between origin and destination is sixty distance units~ and

the specified elapsed time for the problem is thirty time

units, then the rate of travel along the baseline iii two

distance units per time unit. Ten time units after the start

of the journey, the target's position is on the baseline

twenty distance units from the origin and forty distance

units from the destination. The baseline Jis important

because the more constrained the target is, the :loser it

must stay on the average to the baseline. Increasing

constraint on the target by decreasing allotted travel time

or by increasing baseline length straightens out the target

path with the result that inferred positions are easier to

obtain. Very importantly, even if the target is not forced

to stay near the baseline as a resijt of being constrained,

but chooses to do so by hovering or zig-zagging along the

13



line, an inferred course and position are easily obtained.

Even worse, such an inferred course will most likely point to

the destination or from the origin. Accordingly, the second

measure of effectiveness shall be the mean square radial

distance between the present target position and the baseline

target position at specified time intervals during a journey

(c.f., Figure ib). This statistic will be denoted as E(Rt2].

The squared radial distance has been chosen rather than the

radial distance because previous investigations into the

problem, which will be cited in the next chapter, have tended

to use radial distance squared. It is easier to handle

analytically than is Rt, and can be viewed as the sum of the

x and y component squared distances from the component

baseline positions at any time t:

R 2 (X t)2 + (yt (1)

2

It would be not difficult to integrate Rt over the whole

time interval for an individual path in order to get a scalar

value for this performance measure. Likewise, the mean

square radial distance ( E[R 2 ) could be integrated fort

each particular path-producing recipe in order to obtain a

scalar measure for that method. Then, two different path

methods might be compared and, all other measures being

equal, the method with the highest value selected. However,

the reduction of this measure of effectiveness to one scalar

14



can result in great loss of information. Two path generation

procedures might have the same value by the scalar measure,

but be characteristically different. One might tend to have

relatively large values of E[Rt 2 ] near the origin and

destination, while the other method might have small values

there, with large values for t in the middle of the travel

period. Furthermore, each of these two different path

recipes might be more desirable than the other under

different circumstances. For instance, if it is not

important to keep secret the origin and destination because

they are already known to the enemy, but it is important to

be as undetectable as possible (or if detected, as difficult

as possible to redect) in between origin and destination,

then the target would probably prefer the latter of the two

. path-producing methods. In any case, for any path-producing

recipe, the captain of the target should be able to look at

the plot of E[R as function of time. Thus, the measure of
Rt2]

effectiveness itself shall be either a plot of E[R J against

time, the function that describes it as such, or a list of

ordered pairs with time as the first element and mean square

radial distance as the second.

A careful observer might object to this measure of

4 effectiveness. While it is true that a highly constrained
". t 2 ]
target will exhibit a small ER t I for all t and have easily

inferred positions, this does not necessarily mean that a

4. large ECRt 2 ] will guarantee that target position will be

15
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In fact, if maximizing E[Rt
2 ] over thedifficult to infer. EE Ivenh

entire time period is taken as the only measure 04

effectiveness, it should be almost as easy to infer future

position from a few past positions as it is in the totally

constrained case. Imagine a baseline ten distance units

long, a maximum target speed of four distance units per time

unit (4 d/t) and a specified travel time of four time units.

It seems sensible that the target would travel at maximum

speed the entire time in order stay as far away from its

expected position as possible. For a good analogy, imagine a

stick ten distance units long with a piece of string sixteen

distance units long attached to it, each end to each end.

Then, the target might choose a track to maximze the area

between the stick and the string. (The analogy is not

perfect hoever; in the stick and the string example the

radial distance (R ) integrated over the entire time period

is being maximized rather than the radial distance squared

(Rt2 ). One possible path choice is to drive the target

straight away from the baseline at about a fifty degree angle

for eight distance units, then turn back and go directly to

destination. The area of the isosceles triangle thus formed

K with the stick as the base is approximately 31 distance units

6 squared. But a clever hard working target could drive in a

circular arc, thus enclosing approximately 39 distance units

2squared. This path, while producing a large E[Rt 2 at each

4time t, is not very "random" and might be easily targeted.

16



The third and final measure of effectiveness is important

in at least two ways. The first pertains directly to the

shortcoming of the second measure of effectiveness taken by

itself. Given a certain recipe for producing paths, it is

necessary to produce many of then in order to obtain

statistical estimations of both of the two measures of

effectiveness already chosen. It may be possible tc apply

some non-linear regression method to any path, and to extract

an estimate of future position to use as the expected

position for any time t, rather than use baseline position as

already defined. Such a method would quickly identify the

smooth curves produced by any path recipe which maximized the

mean square radial distance only. But the task would he quite

difficult and costly, especially when applied to the several

hundred paths necessary to produce good statistics. in order

to save effort and money, the third measure of ef4 activeness

will subjectively judge how representative paths +rom each

generating method OlookO. Against this measure, any path

which maximizes ER 2 alone will be rejected at a glance if
t

it exhibits long straight legs or a predictably curved path.

However, if a path does not look so regular as to be

2
predictable, then a large ECRt 3 is desirable because it

means the target is staying away from the critical line

between origin and destination.

A second very important reason that paths will be

visually inspected is that they must be able to be executed

17
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by an actual target. Hence, an experienced person must judge

whether or not a path is practical regardless of its

statistics. For example, a high-curvature path which

maximizes may not be implmnentable.

There are, then, three measures of effectiveness that

shall be used to Judge path-producing recipes. Though they

were introduced in a different order to facilitate logical

development of thim, they will be applied to a path procedure

as follows. First, a representative path must "look good" by

being practical, executable, and random looking (no

noticeable regularities). If a path can pass this first

important test, then several hundred will be generated using

the same procedure, and the mean angle (and its standard

deviation) between present course and course from present

* position to destination will be calculated at specified time

intervals. Then, the mean square radial distance between

present position and baseline position will be calculated at

each specified time interval. The E[Rt2 I will thus be

estimated at various stages of path completion. If two path

generating recipes both produce paths that meet the origin,

destination, time, and speed constraints, and "look good" by

the first measure of effectiveness, then the path which

exhibits the least pointing to destination as judged by the

second measure of effectiveness and the greatest E•Rt2  at a

given stage of path completion shall be judged to be the more

* desirable path. Some comparisons will no doubt result in a

18
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situation in which both procedures produce paths which "look

goodl but each of the two methods has a better evaluation

than the other in one of the other two measures. One might

try to form some weighted combination of the two measures,

but this is dangerous because measures of effectiveness do

not combine well; at minimum, their units are not generally

on the same interval scales. Such reductionism is not

necessary anyway. One need only regard both of the last two

measures and di'ide when it is advantageous to weight one

subjectively over the other. In Fact, any formal weighting

system would probably not be able to capture all scenario

dependencies as well as a subjective weighting.

19
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III. PREVIOUS INVESTIGATIONS

While several approaches to the problem of randomizing.7-

target motion are possible, one of the most appealing is

investigated in detail by Washburn [Ref. 1]. In his model a

target takes a random tour by choosing its direction of

travel from a uniform (8,210 probability distribution and its

length of travel on the selected heading from an exponential

distribution with parameter )6 (mean number of turns per time

unit). Thus, turning points are the jumps of a Poisson

process with parameter X, and at any point during the process

both the backward and forward recurrence times are themselves

distributed exponentially with parameter X. This property of

"memorylessness" is very appealing. The probability that the

target does not turn by time (t+a), given that it has not

turned by time t is the same as the probability that the

target will not turn during the time interval (9,a). In

other words, in deciding at any point in time when to turn in

the future, the target does not remember how long it has

already traveled on the same course. Hence, an attacker may

not infer either that the target will stay on a now course if

it just turned to it, or that the target will turn soon

because it has been on the same course for a long time.

Because of the desirability of giving an attacker so little

information, each leg of target travel is chosen by draws

26



from the following distributions:

1/21 8 1 , S 21

0I otherwise;

(2)

" f(t) -

otherwise.

After much mathematical manipulation, Washburn derives

the probabilty density of the target's radial distance from

its origin, given no initial course information, to be:

f(r, t) 1/21((Vt) C2 )t/(1-r 2) J6exp-Xt(1-(4-r )) J. (3)

He also makes some interesting observations:

1. The larger x is the more the distribution piles ip

around the origin.

2. Given no turns, the target is uniformly distributed on

a circle of radius Vt (throughout this thesis, a IV'

will denote a scalar which is the magnitude of the

vector denoted by IV').

3. Very remarkably, given that two steps have been

completed at time t, the target is uniformly

distributed in the circle of radius Vt, not including

the circumference.

The first two observations go hand in hand. Recall from

Chapter I that a target which hovers about the baseline or

21



zig-zags along it has a small E[Rt2 since it is rarely far

from its baseline position. Washburn's distribution

quantifies exactly how much the target remains near its

expected position relative to haw much the target "hoversm,

as indicated by the parameter lambda. The only difference is

that Washburn's model has no drift, resulting in the expected

position being a single point rather than a baseline of many

points as in the drift case. A turning parameter of lambda

-equal to infinity creates the degenerate case in which the

target is distributed on top of its origin with probability

equal to one. The other degenerate case occurs in

observation two when the target does not turn and is then

necessarily on the circle of radius Vt. Just as noted in

Chapter I, ECRt2] may be high in this form of degeneracy, but

given any two bits of position information, future position

can be inferred perfectly because the target has been

travelling in a straight line.

Though it is interesting that the target is uniformly

distributed on the disk of radius Vt if it just happens to

have finished leg two by time t, this fact really does not

L help a target evade an attacker. Given the set of

instructions by which paths are generated, it would be purely

coincidental that the second leg is completed right when the

attacker looked for the target (the probability is zero).

One might say that the target should plan to finish the

second leg just when the attacker is expected. For example,

22le utexetd



the target might know when it conducts some type of evolution

that makes itself more detectable. Also, it also might know

- from how far aw.ay the attacker must come and at what speed,

* so it has a good idea when its window of vulnerability is.

- But if it uses this information to plan two legs then it is

not following a random tour as prescribed by the probability

distributions set forth. If the target is going to break the

rules, it may as well just pick a point at random inside the

* -circle of radius Vt and head for it. This procedure will

guarantee that the target has sampled uniformly over the

disk.

Belkin [Ref. 2 doe% pioneering work in comparing

Washburn's random tour process with a Gauss-Markov process

for describing diffusion, the Ornstein-Uhlenbeck (IOU)

process. As a result, Belkin finds that the mean square

* radial distance of a target from its expected position at

time t in a random tour process is:

EER t2 3 2(V /x3  (0~ + )xt -1). (4)

Belkin dRo. 32 further embellishes his analytic work on the

* random tour process by deriving the mean square radial

distance for a random tour with arbitrary course change

distribution to be:

EECR I2(V / 2 0 (~ 25li2) (xt + xt l) (5t wx y

23



where,

IL ! Cos# dF(O)
23

(6)

It f sin$ dF(O).

y;

Here F(O) is the cumulative distribution function of 0 fo.

which there may or may or not be a proper density function.

The subscript w on V indicates that the velocity is totalw

velocity through the water, comprised of both a drift

.* component and a randomizing component which will be explained

later. Notice that for the uniform distribution of the

Washburn's random tour model, li = Iy = 8, and equation (3)x y

results as expected.

The notion of an arbitrary course change distribution is

important because the expected position of the pure random

tour process is the origin at time zero. As such, the

process will never cause a target to migrate toward its

destination. Therefore, it is necessary to introduce some

bias into the selection of the courses in order to keep the

target moving in the correct direction toward its

destination; and even a course distribution alone will not

cause a target to visit the destination without the addition

of some further constraining process. While an infinite

24



number of arbitrary course selection distributions are

possible, several look promising when applied to the present

probl em. Loan* CRef. 4J suggests:

f(O) - 1/21 (1 + ¢€os$) for 0 4 (8,210 (7)

where bias in the positive x direction can be controlled by

the selection of the parameter a. Because constraining

target travel by course distribution alone only causes the

target to migrate toward its destination, without giving any

guarantee that the endpoint will be visited, some process

must be devised to meet the visitation constraint. One of

many possible course distributions, which also injects the

time constraint into course selection, is:

0 normal [CUS, Arcos(Td/Tr)] (a)

where CUS is the course to the destination at the beginaing

of the leg, Td is the time it would take to go directly to

the destination at mean speed or maximum speed (whichever is

selected as important for a particular run), and T is the
r

time remaining in the problem. Notice that in the ,nost

constrained case in which T = T , the variance of the coursed r
distribution equals zero and the target travels straight to

its destination. While this course distribution causes the

target to travel over the destination, it does not control

when it will cross it. Hence, it does not solve the

25
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controlled time of arrival scenario devised in Chapter I.

Belkin [Ref. 51 meats the visitation constraint with the IOU

process and is able to distribute the contraints evenly

across the whole path through optimal control of velocity.

This means that the target arrives at destination when it has

to, without either traveling to it straightaway and hovering

for the remainder of the period, or by randomizing travel

until the last possible opportunity to get straight to the

destination on time. Nonetheless, mean square radial

distance from baseline position will necessarily need to

begin decreasing at some point in order to guarantee that the

target visits its destination. Two observations made by

Belkin motivate the approaches taken in this thesis for

devising path recipes. He states CRef. 6] that ...it is

possible to approximate a random tour process with arbitrary

course change distribution by an IOU process with linear

drift." He also notes (Ref. 7] that "...as the constrained

process approaches the terminal constraint at T, the process

behaves precisely like an unconstrained process running

backwards in time from T.0 T, in this instance, is the total

time alloted for the problem and the terminal constraint is

the requirement for the target to be at the destination at T.

As a result of Belkin's insights, the first of two path

producing recipes that will be developed in this thesis will

treat constrained travel between two endpoints as a random

4i  tour process with drift (distance between endpoints divided
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by total time), executed from both endpoints with an attempt

to connect the two separate paths somewhere in the middle.

The drift vector applied to the path beginning at the origin

will "blow' the target toward the destination, while the

drift for the path starting at the destination will "blow" in

1 the opposite direction, toward the origin. This approach
V

constitutes a discrete approximation of the IOU process with

drift, wherein the random tour out of the destination is one

half of the total problem run in reverse.

Belkin's solution to the problem of constrained target

travel is the IOU process and he has developed a computer

simulation named IOUTRK for which he presents some sample

paths [Ref. 81. While the genesis leading to his adoption of

the IOU process begins with Washburn's random tour, Belkin

proceeds to attempt an approximation of the random tour

process using Brownian diffusion [Refs. 9,161. However, his

investigations lead him ERef. I11 to the very clever

realization that the functional form of the mean square

C'.-i radial distance, EERt2 ] , is exactly the same for the IOU

process as for the random tour after making only two simple

parameter substitutions (Ref. 12]. He concludes his analysis

•Ref. 13] by stating that "...if one is constrained for

theoretical or computational reasons to approximate the

motion of a randomly touring target by Gaussian diffusion,

then the Ornstein-Uhlenbeck displacement model is to be

' preferred to the Brownian motion model."
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The random tour process is important and has many

desirable properties that will be discussed further when the

first new path recipe in this thesis is developed and

analyzed. As indicated previously, the random tour will not

be approximated by any other process; it will itself be

executed in a new way. The second model to be offered in

this thesis will examine Brownian motion, not as an

approximation of a random tour, but as a basis for solving

the constrained target motion problem in another way. Though

rejected by Belkin as an approximation of the random tour

process, Brownian motion stands alone as a method for solving

the problem at hand in a very novel way.
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IV. PER!

A. RN O(M TOUR WITH DRIFT

In order to evaluate the random tour with drift against

the measures of effectiveness delineated in Chapter II, a

Monte Carlo simulation is devised. Specifically, two randot

tour processes are executed, one from each endpoint, in order

to guarantee that the destination (actually the starting

point of the second process) is visited as required by the

constraints. Recall from Chapter III that the reason fcr

executing two separate processes stems from Belkin's

observation that the path approaching the destination loof

like an unconstrained random tour run in reverse. Hence, tfie

path which visits the destination is constructed by executing

an unconstrained random tour originating at the destination.

For all paths, and without loss of generality, the origin is

zero on the x axis of a Cartesian coordinate system in two-

space and the destination is however many distance units

desired in the positive x direction. The random tour

beginning at the origin is "blown" in the positive x

direction by the drift vector and the process originating at

the destination is "blown" in the negative x direction by an

opposing drift vector of the same magnitude. The goal is to

generate two paths that "blow' into each other somewhere

4 between origin and destination. At the outset, the distance
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between origin and destination, the time period, the mean

target speed through the water (V ), and the target turning

rate (lambda) must all be specified. Drift velocity is then

%I in the positive or negative x direction, depending on which

of the two random tours is being executed, with a magnitude

* equal to total baseline distance divided by total problem

time. Figure 2 below. illustrates the other important

velocity, the randomizing velocity V r, the magnitude of which

must be computed before the random tour can begin.

Figure 2:

Water Velocity as a Composition of Drift
and Randomizing Velocities

* Because the target must have a mean speed through the water

* of V, and Vdrf is determined by baseline length and total

run time, there is no freedom in choosing mean V . Recallr

that the angle theta is the direction of target travel chosen

from the uniform probabilty distribution (0,210 and notice in

*Figure 2that V iV d + V r-
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Then :

_ 21 21

SE[w2] 3 E[d 4-VdUrl V 1/21V sin 0+(Vocos+Vd (3

8f21 2

r d r
r d

Hence, given V and a desired mean Vw, the randomizing
d

velocity for the random tour with drift should be:

2v X.":' Vr , (V2 - d) (19)

r w d

Notice that as the drift speed approaches the water speed,

the randomizing speed goes to zero. This is reasonable

because when the target has just enough time at a given speed

to go straight to the destination, all its velocity goes

toward matching the drift velocity and there is no excess

velocity left over for any randomization; the target is

totally constrained.

With these preliminaries taken care of, the simulation is

4 executed beginning with the "left" path (out of the origin at

* zero on the x axis) according to the following procedure:

1. Choose the direction of travel from U(0,210.4"
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2. Select the length of each leg of the process as V t,r

where t is determined by a draw from an exponential

* .distribution with parmeter lambda.

* 3. Compute the actual vector Vw describing travel for the
w-1

" leg by adding a prorated drift vector Vd, the magnitude

of which equals C(t / total problem time) x baseline

length], to V which was determined in steps 1 and 2.r

4. Continue executing steps 1-3 until the cumulative

travel time for all left side legs is at least .475 of

the total time for the whole problem.

After one left side path is simulated, a similar process is

executed from the "rightu side (destination) using an

opposite drift direction. As a result there are now two

random tour paths which migrate toward each other at the

determined drift rate. The two processes use up at least .95

of the total time alloted for the target travel from left to

right. Now, a circle with radius .65 x total time x desired

water speed is drawn around the left endpoint. The

proportion of time left in which to join the two sides is not

arbtrary, but depends on the length of the total time o4 the

problem. Here, the total time is assumed to be between 38

and 66 time units, making the joining period between 3 and 6

time units. During this connecting period the target should

maneuver as suggested by X., laying down a path that will make

the connection. If the right path endpoint falls within the
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circle, then a "match" has occurred and the two connected

paths constitute a complete sample path satisfying all

constraints. If a match is not realized in a specified

number of iterations of the right path, then a new left path

is executed and another attempt to generate a matching right

path is made. The number of right paths that are generated in

attempting to match a given left path and the number of left

*paths that are generated after a right path match iteration

Io limit is reached can both be controlled by parameters in the

* simulation. The entire process is continued until 18

matches (or any other number desired) are obtained or until

the limits for the number of attempts are reached. The

motivation for this procedure of matching is twofold. F.rst,

desired statistics can be generated to test the symmetry of

both sides since many right side and left side paths will b4

generated during the quest for 180 matches. Secondly, in

attempting to get matches, the number of right sides allowed

in order to match a given left side can be strictly

controlled. The lower the limit on right sides, the more

likely it will be necessary to generate another left side.

In this manner, the total number of left sides generated in

order to obtain 188 matches can be much greater than 108, and

the number of right sides will be even greater yet since

right sides are constrained to match left sides and not vice

versa. This path generating method results in two complete

* distributions of paths for the left side. Some left hand
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paths result in matching right hand paths, while other left

paths are rejected because no right paths can be generated

(within limits) to match them. The retained left paths

comprise a set which will be called the "clipped" set, while

all paths, rejected or not, will be called the "unclipped"

" set. These names are reasonable because the paths that match

are more constrained; they have not been rejected as

unacceptable. A comparison of the statistics of interest for

both left hand sets will indicate how much degradation

results from constraining the clipped set. Additionally,

there is a third set of paths which contains all the right

paths which match left paths. Statistics are generated for

this set in order to check symmetry with the left hand

clipped set.

In order to facilitate the generation of valid statistics

it is necessary to sample the left and right paths at the

same specific time intervals. While it is much easier to

sample a path at the end of each leg, the resulting

statistics do not provide consistent comparisons along the

time line. Accordingly, statistics are generated at times

determined as a function of the turning rate, X, so that the

probability of generating statistics twice on the same leg

is .SS1. The statistics generated at each time check for all

three sets of paths are:

1. Mean magnitude of the angle between present course and

34
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course to destination from present position; variance

and standard deviation of that mean angle.

2. Mean square radial distance between baseline position

(pure drift prorated for cumulative run time) and

actual position.

I-

Using the procedure described here, statistics are generated

K for a water speed of 4.6 dist/time and drift rates of 3.75,

3.0, 2.8, 1.0 dist/time, all for turn rates of 1.8, 2.0, and

4.8 per time unit. There are a total of twelve cases.

S. BROIWNIAN-DERIVED MOTION

Since Robert Brown first observed the highly irregular

motion of suspended pollen particles in 1827, mathematicians

and scientists have spent a great amount of time and effort

investigating Brownian motion, and its widespread

applicability to naturally occurring events makes it a

reasonable candidate for randomizing target motion. From a

probabalistic viewpoint Freedman [Ref. 14] defines normalized

Brownian motion to be a stochastic process (B(t):8 < t < W)

on a sample space 0 with properties (a-c) for points W 4 A:

I.-

(a) B(8,) , 8 for each w9,

(b) 8(.,(0) is continuous for each Wd,

() for S < t 1 < t 2 <...< tn_ < n the increments B(t )9

B(t2) -O(tl),..., B(tn) -B(tn_) are independent and
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normally distributed, with means S and variances t

t - t 1 9 -8 69 tn  - 1 .

Additionally, this process is Markovian, meaning that the

future is conditionally independent of the past, given the

present;

-P X it X i x t  it )

mPC Xt S i xM i)
t+I  1 t t

where the i's are elements of the state space for the random

variable X.

Once again, the problem of constrained target motion

shall be framed in two-space using a standard Cartesian

coordinate system. Taking position to be specified by each

component separately, the conditional probabilities for each

coordinate at time t, given the initial constraints are:

PC X(t) = x X(8) = 8, X(T) - L)
i (12)

PC Y(t) = y 1 Y(8) = 8, Y T)= 8)

where t is cumulative run time, T is total alloted time and

(0 S t S T), L is the positive x coordinate of the

destination, and 8 is the y coordinate of destination.

Hence, the Cartesian layout is exactly as it is for the

random tour case. Conditioning the Brownian motion

constructs a Brownian bridge' between the origin and the

destination, by which the initial problem constraints are

4met. The x component conditional probability expands to:
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P C X(t) = x : X(6) = 0 ) . P (X(T) =L I X(t) = x
P C X(T) = L : X(6) - S )

~(13)

- P CX(t) - x. X(T) - L : X(8) = S )
P (X(T) - L 1 X(S) a0 )

and the conditional density when X(t) is distributed Gaussian

becomes:

exp(-1/2C(x-S)/(Ut4 )S 2) . exp(-1/2C(L-x)/(U<(T-t) ) J2)

(M U t4  (210 4  U (T-t)6

(14)

expC-1/2E (L-9)/(Uft ) 32)

(210 d U T*

exp(-1/2 0) T T

(2104• t4 * (T -t)

where:

0- (x2/02 ) + ((L-x) 2 /U 92lT-t)3} - (L2/02 T).

After completing the square for 0 and simplifying, the

conditional density reduces to:

exp(-1/2(x-Lt/t)/( 02t(1-t/T)) 32)[-15)

(. 210 U . (t l-(t/T)])(
i

Hence, X(t) and Y(t) [by a similar derivation] are distributed:

X(t)-. .Normal C Lt/T, U2 t(1 - t/T)]
(16)

Y(t)'-Normal E 0, U2 t(1 - t/T)3.
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In both distributions 62is a physical parameter that may be

specified, and the total variance describes a parabola when

plotted against t. The maximum variance is (02 )(T/4) and

occurs at t -T/2. Very importantly, the variance is zero at

both the origin ( t - S ) and the destination ( t - T )

One of the measures of effectiveness chosen in this

thesis against which to judge a target path examines how a

path OlooksO and whether it is executable by a crew.

Brownian motion, as defined, is not executable because it is

a continuous process with an everchanging velocity, and as

such, is impossible for a large target to duplicate. However,

there is no reason why the continuous process cannot be

sampled at various times and the selected points be made the

endpoints for legs of straight line travel. Of course, as the

time interval between samples is lengthened, the linear

approximation connecting the sample points becomes less

B8rownianO. Nonetheless, the process still retains vestiges

of its Gaussian properties, and the flavor of Brownian

mot ion.

* An exponential distribution should be used to determine

the sample times for the same reason that is advanced for the

random tour: the memoryless property applied to course change

0is advantageous to the target. Exactly how to sample from

the normal distributions (16) is the last problem to be

solved before a procedure can be devised for executing paths.

* One might sample by generating a string of exponential
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random variables using the desired parameter lambda in order

to get the time jumps ( t V t2 9,...,I tn ) of the Poisson

process which determines course change; then make a draw from

each from the x and y normal distributions at times t =ti,

tI + t 2 9** .. 9 tn1+t to obtain x and y coordinates for the

path legs. While the mean of the y coordinate draw is always

zero, there is nothing in this method to prevent one y

coordinate draw from falling on one side of the x axis and

the next draw on the other side. As the cumulative time

approachs T/2 the variance of the draw becomes relatively

large and it is quite likely that two consecutive draws which

fall on opposite sides of the mean will be very far apart

relative to the corresponding time step. A similar argument

applies .to the x coordinates and because position is

determined by both coordinates, if two consecutive draws are

on the opposite sides of their means ior both the x and y

coordinates, the distance between two consecutive positions

could be very far apart. The result is that a ridiculously

high velocity is required in order for the target to travel

from one sample point to its successor in the given time

step. What is needed is some way to guarantee that a

successive position is tied to the one before it. Future

* position must be conditioned on present position, and that is

what is missing in this method. One possible remedy might be

to reflect each draw across its mean if needed. Thus, the

4 variance of the draw is preserved while the distance between
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successive positions is shortened to a manageable length.

However, this type of optional reflection does not capture

the true Markovian property of each draw, but it does provide

* insight into how each successive draw should be done.

Suppose that the first draw is carried out without

reflection as described above. The first leg will connect the

origin with a point selected by a draw from the two normal

distributions (16) substituting t =t (the first time

selected from the exponential distribution). Invoking the

Markovian property, all information prior to this latest

point is superfluous. Hence, there exists a completely new

controlled time of arrival problem, wherein the latest point

becomes the new origin and the line between that point and

* the destination becomes the new baseline. The total run time

for the new problem is T - t .This iterative process

continues until the original total time MT has expired. On

the final leg, the cumulative time *or the two coordinate

draws is t - t t + t = T, so that the variance in1 2 n
(16) goes to zero and the target visits its destination on

time. This procedure is a sensible one that seems to capture

the properties of Brownian motion while at the same time

producing discrete linear legs of target travel. Thus, it is

* the procedure adopted to produce the second type of path

developed in this thesis, and the steps of the recipe are:

1. Select baseline length (distance between origin and

48



U
destination = L), total run time (T), turning rate (V,

maximum and minimum target speed, and physical

parameter for variance (02). Simulation frame of

reference is a Cartesian coordinate system in 2-space,

with origin at (8,S) and destination at (L,@).

2. Generate a string of random variables from an

exponential distribution with parameter lambda, and

truncate the nth value in the string so that the sum o4

the random variables tI + t2 +...+ t n =T.

3. Make a draw from the normal distributions in (16),

using t = cumulative run time. For the first draw,

t - t for the second draw, t = t I + t2; and so on.

4. Measure distance between new point (Xi,Yi) and previous

point (X ,Y ) * If the distance/t is greater than

the maximum target speed, truncate the leg as

illustrated in Figure 3 if the distance/t. is less than

the minimum target speed, extend the leg. Either

truncation or extention results in new (Xi,Y) .

5. Reframe problem as a completely new one, using (Xi,Y i )

as the origin, (L,8) as the destination, and T = time

remaining. Execute steps 3,4 again. The last draw

forces (X,Y) to be equal to (L,8) unless truncation or

* extention occurs, in which case problem ends on time

with target short of destination, or target continues

to destination, in which case total travel time exceeds

l T. One path is completed.

41
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Figure 3:
Teg Truncation and Extension

v Figure 3a: Truncation

1

1X

(X yi-1' i-i X.i(new) X.(old)
Jieg i-~mx pd. x t..

so ~Ieg 1 Cnewl1j max. spd. x t.
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Figure 3b: Extension
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6. Generate sev.eral hundred such paths and compute the

statistics o4 interest -For each one at specific time

intervals (mean square radial distance between present

position and baseline position of original problem; and

absolute difference between target present course and

course to destination from present position). Look at

plots of paths to determine if they *look goodw, as

discussed in Chapter II.

After statistics and plots are generated -for both the

random tour and Brownian motion derived paths, the task is to

compare the two approaches in order to determine their

respective strengths and weaknesses.
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V. RESULTS

A. RANDOM TOUR WITH DRIFT

One measure of effectiveness for judging paths requires

that they *look good8, as detailed in Chapter '1I. It makes

sense to try this measure on a path procedure first before

expending effort to evaluate a mass of statistics. If the

candidate paths can be rejected on sight then time will not

be wasted on the other two measures.

Figures 4a-f are representative paths generated by the

random tour with drift method. The circle in these figures,

as described earlier, is inscribed with the end of the left

path as its center and has a radius V x time remaining in

problem after the execution of both the left and right paths.

* Thus, the target can easily travel from the end of the left

leg to the end of the right leg in the allotted time at the

stated water speed. The ratio Vd/Vr listed on each of the

figures measures just ho constrained each path is. The

ratio ranges from zero for the unconstrained case (random

tour without drift) to positive infinity for the totally

constrained case (straight line between origin and

destination). Figure 4a shows a path for which Vd/Vr = 2.69;

clearly this path does not "look good" and is not acceptable.

It is almost a straight line between origin and destination,

4 and future target position is easily inferred from only a few
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fixes. Of course, any method +or devising a path under such

constraints is bound to fail. A target c~annot randomize its

motion if it must travel directly to its destination. The

rejection of the path in Figure 4a is not a rejection of the

idea of random tour with drift, but only of the constraints.

-- Even though 2.69 is in the low end of the range of V d/VrJ any

ratio greater than about 1.50 produces paths that are

unacceptable. In Figure 4b, where the ratic' is 1.13, the

path is still highly constrained but looks much better. The

drift constraint really begins to loosen in Figure 4c, and

in Figures 4d-4 the ratio is 0.26. Here, the randomizing

qualities of the random tour are evident. The paths all

Olook good8, and whether they are executable by a target

depends only upon what the time and distance units are. For

instance, if the time unit is one half hour, Figure 44 has

the target turning every 7.5 minutes on the average. This

turn rate is not realistic -for a large ta.-get. However, the

path in Figure 4d has a mean turn rate of two per hour and is

certainly executable. The main concern at this point has

been put to rest; the paths in Figures 4c-f for which the

time constraints are reasonable, look good enough to warrant

further evaluation.

The next measure of effectiveness against which to

evaluate the random tour with drift is the distribution of

the magnitude of difference between present course and course

* from present position to destination, measured at specified
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times during path generation. This measure is discussed in

Chapter 11 and is illustrated in Figure Ia. Recall now the

procedure for generating each log of the tour. The direction

of the randomizing velocity (V) is selected by making a drawr

from, a uniform (8,210 distribution, and its magnitude is

determined by multiplying the randomizing speed (determined

from desired target speed through the water and drift, as in

Figure 2) by the time length of the leg selected from an

exponential (x) distribution. While the distribution of the

direction of the randomizing velocity may be uniform, the

distribution of the direction of the velocity through the

water is not. The solid spokes of the left circle in Figure

18a represent randomizing velocity and are equally spaced

angularly. The dashed spokes of the right circle in Figure

5a represent the water velocity after the appropriate drift

velocity is added, and are not equally spaced angularly. The

angle Ce0 that any water velocity vector (V ) forms with the

x axis is a function of the angle C(0 of the randomizing

velocity, the drift speed, and the randomizing speed. In

Figure 5b;

rinV d dVd X
rd

where the randomizing velocity required to cause the desired

mean water velocity, as derived in (9) and (10), is,

V ?V 2 Vd2
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because the mean angle between randomizing velocity and

course from present position to destination is 98 degrees.

* lThe x and y components of the randomizing velocity are;

x = r cose y r sine e

and the x and y components of the water velocity are;

x1  x8 +d Y Y"

Now, tan$ =Y/X.i:2 1

tanG$ y 8 / (x8  d)

=(((V /X) sinO ) E((V /)J cosO)* d3){(r r

- sin$ /cos +(V
s s + (Vd/Vr).

And finally,

0 = arctan (sinG / [cosO + (V / V )]) (17)

Notice that the redistribution of courses is not a function

of lambda, but is strictly dependent on the ratio Vd/Vr.

Even having the distribution of 0 and knowing 01 as a

function of 0., obtaining the density of 01 by mathematical

analysis is very difficult, but can be circumvented somewhat

* satisfactorily by using Monte Carlo simulation. It is a

simple matter to draw several hundred random numbers from a

uniform (8,210 distribution and then tranform them with (17).

* This procedure was executed and the results appear in Table 1
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Figure 5:

Effect of Drift on Course Distribution

Figure 5a:

Redistribution of Courses After
the Addition of Drift

Figure 53b:

Representation of Course
Angular Shift
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compared with the statistics obtained during path generation.

Some significant observations are:

1. The mean magnitude of the difference between present

course and course to destination obtained from path

statistics, and the associated standard deviation,

agree very closely with the Statistics obtained for

by the simple simulation described above. This result

* was anticipated because the expected position of all

experimental paths lies on the baseline even though

very few actual positions fall there. However, and

very importantly, Figures 6a, b, c and 7a indicate

that there is a strict maximum deviation angle for any

VdAVr ratio. This is true only if the drift vector

points directly from present position to destination

all the time. If position is always on the baseline

* (where the mean position for the entire process lies)

then a maximum deviation will exist and woill be arcsin

(V r' ) d a fact which Figure 7a makes convincing.

However, during travel the target deviates above and

0 below the baseline, and though there --s a maximum angle

between the drift vector and water vector, to this

angle must be added the depression or elevation angle

between the horizontal and the destination. For

example,, if the target's x- axis distance from

destination is 18 units, as is also the y'-axis
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-distance, and the target is above the baseline, then

the angle between the horizontal line going through the

target and the line going between target and

destination is 45 degrees. Now, the next leg out of

that position might form the maximum angle

Carcsin (Vr/Vd)] between it and the drift direction.

Then, the pointing deviation which we are interested in

is the sum of those two angles - 45 degrees +

arcsin (Vr/Vd) .  Nonetheless, the mean pointing

.- deviation angles and their standard deviations are

remarkably similar for the simulated paths and the

simulation of f(*l), where one set of statistics is for

the true distribution of courses and the other is for

the conditional distribution given present position

equal to mean target position.

2. No significant difference is noted between the mean

differences for left unclipped, left clipped, and right

paths. This is evidence that not only are left and

right matching paths synmetrical in distribution, but

more notably that clipping the left side by

constraining it to match a right side path has no

effect on the frequency with which the target points at

* its destination.

3. Lambda, as expected, has no effect on course

distribution; only the ratio Vd/Vr does.
Pd/Vo
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Figures 6a-c show the distributions of simulated course

deviations for high, medium and low ratios. Notice that for

a high ratio, greater than one in this context and signifying

tight constraints, the distribution loads on the higher

values, while for ratios less than one, signifying loose

contraints, on the lower values. The break point occurs when

the ratio is equal to one. While this loading, first on one

end of the distribution range and then on the other, seems

odd at first blush, there is a reasonable explanation for it

that Figure 7 helps to illustrate. For high ratios the

tranformation of 0 to 0 causes a high proportion of the arc

length of the circle described by the maximum Vr  to be

subtended by the higher values of 0 Figure 7a illustrates

this occurence and also provides a graphical representation

"- of why maximum values of course deviation are low for high

ratios. As the ratio gets larger, the drift vector in the

positive x direction accounts for an increasing amount of the

water velocity, causing the circle described by the maximum

magnitude of the randomizing velocity to grow smaller.

Notice also that when Vd as Vr (Figure 7b) the maximum course

deviation is 96 degrees and all feasible values are equally

distributed because they subtend equal amounts of arc length.

*| 1When the ratio is any greater than one, it is immediately

feasible to have deviations as great as 186 degrees, the

maximum possible. However, the higher deviation values

o| subtend less arc length of the circle described by maximum V
" r
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Figure 6a:

Simulated Distribution of Course Deviations
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Figure 6c:

* Simulated Distribution of Course Deviations
V /V 0.26

70,

50-

Ge 30: ,

20--

so .2 SIDRA
95

70

so - EAN

30

-1 SIGMA

2 -2 SIDRA

0.1 -3 SIGMA

0.00 40.00 90.00 120.00 160.00 200.00
DEGREES

MEAN =7.838E1 MIN = .000E0 CELL = IOOOEO

SIGMA z5.144EI MAX z1-790E2 nCELLS =179

wPOINTS =5000

6 0



Figure 6b:

Simulated Distribution of Course Deviations
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Iigurne 7:
Redistribution of Courses After

the Addition of Drift

Figure 7a:
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Figure 7b:
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than do the smaller values, as illustrated in Figure 7c.

Recall though that these distributions are not actual course

* deviation distributions determined from generating actual

paths, but are conditional course distributions given that

present positon equals baseline position (which is expected

position of target over all possible paths). However, and

most importantly, the mean and standard dev iation of the

actual path course deviation distribution can be determined

using this simple inexpensive simulation once Vd and Vr are

specified. Thus, the target knows how much it tends to point

at its destination or away from its origin.

As detailed in Chapter II, the third measure of

effectiveness is mean square radial distance between present

position and baseline position. If the density of the course

distribution after the application of drift Ef(0 )] had been

2obtained, then E[R t2 could be easily calculated for any time

making the appropriate substitutions into (6) and (5).

Again, however, the derivation of the densi'y 3f 0 is very

difficult and not necessary because the process can be viewed

as a random tour carried out at the randomizing velocity,

merely shifted right or left by drift velocity prorated for

cumulative run time. At any time, the "origin" of this

process, viewed as a driftless random tour with velocity Vr9

2.is the baseline position. This way, E[R I is calculated by
t

substituting V and t directly into (4). However, ther

* resulting figures can only be compared validly to the
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experimental statistics obtained for the unclipped left side;

the requirement for left and right sides to match adds a

further constraint that is not captured by a process that is

merely an unconstrained random tour appropriately shifted for

drift. Thus, the statistics for the matching paths must

first be compared to each other in order to test for symmetry

and then compared to the experimental statistics for the

unclipped left side, which themselves have been compared to

the figures obtained from (4). All these comparisons were

made with the following significant results:

1. Experimental statistics for both the left and right

matching paths support the assertion that both sides

are symmetrical.

2. Experimental statistics for the unclipped left path

mean square radial distance agree very closely with the
analytical figures obtained by substituting V into
aar r

(4). Experimental figures tend to be one to three

percent higher, but any difference that small is

acceptable as sampling error. Mean square radial

distance grows with time, and for a given time t is

less for greater lambda, as expected. Table 2

summarizes the statistics for the various time checks.

"Cleft' denotes clipped left paths, 'left' denotes

unclipped left paths, 'actual' means obtained from path

simulation, and 'expect' means obtained from equation
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(4) by substitution of appropriate V . The holes in

r

the table occur because, at lambda equal to one or two,

checks were not made for all times listed.

Nonetheless, more than enough statistics were obtained

to provide valid results.

3. The ratios of experimental clipped/experimental

unclipped mean square radial distance were calculated

for the left paths and are summarized in Table 3.

Linear least squares regression of the ratios against

time indicates that mean square radial distance

reduction caused by clipping (requiring a match with

the right side path) is independent of V d and lambda

but dependent on time. The mean reduction is about two

per cent per time unit with a standard deviation of

approximately 1.2 per cent over the range for which the

regression was done. On this range a linear fit is

quite good, but notice that after fifty time units the

linear reduction results in a mean square radial

distance of zero, which is ridiculous because it is out

of range for the regression. Clearly, the reduction

caused by requiring the right and left paths to match

must be calculated over the appropriate range. Though

two per cent does not sound like much of a loss, it

becomes quite significant after awhile, as will be

demonstrated when the random tour with drift compared

e with Brownian motion. Nonetheless, it is clear that
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mean square radial distance for any path, given drift

speed, randomizing speed, and lambda, is very

predictabl e.

B. BROWNIAN-DERIVED MOTION

Again, the first measure of effectiveness addresses how

representative paths produced by a method Olookm, and Figures

8a-g are representative of discrete Brownian-derived motion

as executed by the second procedure delineated in Chapter IV.

The paths in Figures 8a-d 'look" acceptable; they show no

pattern of regularity and seem to be executable, depending on

the time and distance units selected. Figures 8a and 8b were

generated from identical random numbers, Vd/VP ratio,

- 1.0, and maximum and minimum water speeds. The only

difference between them is the physical parameter 02 which is

5.8 for Figure 8a and 18.8 for Figure 8b. The paths look

quite similar but do not look different enough for one to

speculate about possible differences for the other two

measures of effectiveness. It is worth noting that for

02 - 5.9 there are more extentions and less clips than than

for 02 = 18.8. This result is to be expected because a

higher variance in the normal draws in (16) should produce

successive positions that are farther apart than those

produced with a lesser variance. When mean square radial

distance is discussed later, the amount of clipping and4 "

extending which takes place becomes significant, generally
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causing the difference for that statistic for two different

02 to be reduced.

Figures 8b and 8c were produced with similar inputs

except for lambda, which is 1.8 and 3.6 respectively. The

'- difference between these paths is readily apparent, but again

it is impossible from one example for each set of inputs to

draw any general conclusions about the effect of turning rate

on other two measures of effectiveness. Figures 8d-g were

* generated from identical inputs with the exception of V/Yr

" which is 6.12, 8.23, 6.5, and 1.98 respectively. As the

ratio becomes higher the paths straighten out as expected.

The path in Figure Sg does not "look" acceptable, which is no

surprise given the strict contraints. Random tour paths with

similarly high ratios suffered the same straightening.

Notice also, that as the ratio becomes high the process is

more constrained but less likely to obey the constr-aints.

The goal of the original controlled time of arrival problem

was to assure that the target started from an irigin and

visited the destination at the end of the stated time period.

It is clear in all four of Figures 8d-g that the constraints

are violated, and furthermore, that as the V/Yr ratio

increases the constraints are violated more. For any path

that does not end at the destination there remains three

options. First, it can be rejected outright. Secondly, it

is possible that the requirement to reach the destination

* exactly is not as important as ending the path on time, in
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which case, the path is acceptable if it is not too straight.

Lastly, if the time constraint is not as important as

ensuring that the target visits the exact destination, then

more time can be given to the target with which to travel

* directly to destination if the distance is not great. The

" , problem of control will be the subject of further comment

when mean square radial distance from baseline position is

examined. It suffices at this point to recognize that the

problem exists and will probably affect the other two

measures of effectiveness.

The second measure of effectiveness quantifies how much a

target points directly away from its origin and to its

destination. For the random tour it was found that the

amount o¥ pointing, as measured by the magnitude of the angle

between the target's present course and the course to the

destination from present position, was a function only of the

ratio Vd/Vr, and not a function of time or turning rate

lambda. Those results provide a starting point for the

investigation of pointing for Brownian-derived motion.

Histograms of the deviation angle appear for high, medium,

and low VdAU ratios for Brownian-derived motion in Figuresd/r

9a-c, and Table 4 lists the statistics for three d values

and six ratios. The table also lists values of pointing

statistics for the random tour with drift obtained during

path generation. Significant results are:
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1.The amount of pointing for Brownian-derived motion

agrees very closely with that for the random tour with

drift for low V d/Vr ratios, as exhibited in Table 4.

This result is expected because, regardless of the

method chosen for generating paths, a drift velocity

will bias course headings in the direction of the

destination. Brownian-derived motion with the same

VdAJ ratio as a random tour should exhibit similar

pointing behaviour.

2. Table 4 also shows that as the drift/randomizing ratio

increases the pointing statistics for the two different

processes begin to diverge. While the random tour

statistics continue to agree closely with those

generated by the simulation of (17), the Brownian-

derived motion statistics decrease to a mean of

approximately 56 degrees and standard deviation of

about 26 degrees. Here, the effects of loss of control

at high drift/randomizing ratios appear. The pointing

statistics are more favorable, but at the cost of the

target breaking constraints. Again, imagine the stic(

with a piece of string attached to each end as

described in Chapter 11. If one end of the string is

.4 loosened and required only to be near the end of the

stick, that is equivalent to adding more string and

thereby easing the constraints. When the mean square

radial distance for Brownian-derived motion is
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examined, the lack of control at high drift/randomizing

ratios will become evident.

3. The pointing statistics show that -for Brownian-derived

motion lower values of 02 produce s!ightly more

pointing. This phenomenon is most pronounced at high

VdV ratios, where the process is not under control

anyway. However, it demonstrates that even at the same

ratio, a smaller variance for the position sampling

causes the process to be more constrained. The slight

difference in statistics would most likely be gr,?ater

if low variance legs were not extended more and clipped

less than high variance ones.

4. The histograms in Figures 9a-c show that the staidard

deviations of the distibutions tend to increase and

decrease with the means. The low mean distributions

are peakier than the high mean ones, indicating

processes that are more constrained; the opposite is

true of less constrained paths.

The third and final measure of effectiveness for Brownian-

derived motion is the mean square radial distance between present

position and baseline position, measured periodically throughout

path generation so that a graph or set of ordered pairs

* (t, EERt2 3) is produced for comparison with other path generation

methods. Significant results for this measure are:
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1. Figures l8a-d illustrate mean square radial distance

for four Vd/Yr ratios and .- 1.; each figure has

curves for three different values of the physical

parameter 0 . Immediately it is clear that the mean2

square radial distance decreases as the

drift/randomizing ratio increases. This resuit +ollows

directly from the greater constraint placed on the

target at higher ratios, and is similar to the results

for the random tour with drift.

2. The problem of control for Brownian-derived motion is

apparent in these figures. Even in Figures 13a and

1b, at the lowest two drift/randomizing ratios, the

mean square radial distance does not go down to zero,

indicating that on the average the target does not

visit the destination. Notice that as the ratio becomes

progressively higher in Figures I8c and ld that the

mean square radial distance tends to become even

greater at the end of the time period. Clearly, as the

problem becomes more constrained, control is lost.

Another characteristic of this path generating method

with small lambda is the hook in the curve at the end

of the time period, indicating an undesireable increase

in mean square radial distance during the final time

unit of travel. This increase is the result of the

truncation of the final leg when time runs out, though

the random numbers for the final leg were generated as
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if no truncation takes place. The simple solution is

for the target to travel directly toward the

destination on the last leg in order to get as close as

possible. A target would probably do that anyway since

it does not really need to be told what to do on the

final leg. The algorithm for path generation was

purposely not modified in order to demonstrate this

peculiar phenomenon. However, it is important to

realize that a true "bridgem, Brownian or otherwise,

does not exist as long as the two endpoints are not

connected by the target path.

3. At lower drift/randomizing ratios, the mean square

radial distance is less for smaller o2r as Figure 18a

clearly illustrates. However, as the ratio increases,

the mean square radial distance is approximately the

same for all three values of C12" The curves in Figures

10b-d also show that for different 02 values the

maximum mean square radial distance occurs at different

times for a given drift/randomizing ratio. The mean

square radial distances for different O2 become closer

in value because of the clipping and entending process

that occurs to keep the target within speed limits. As

the problem becomes more constrained at higher drift/

randomizing ratios, the target tends to bump into the

-7. speed bounds more. Hence, the process is clipped and

extended more and the natural differences among the 2
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values dominate less than the speed limits, which all

paths must obey equally. Also, as the mean square

radial distances for various sigma square all get

closer to the baseline for whatever reason, they are

bounded on one side by the baseline (the minimum value)

and get sandwiched together, as Figure 18d clearly

demonstrates.

4. Figures 18a-d show that for a given Vd/Vr there is a

value of sigma square which produces a mean square

radial distance curve that is symmetrical about the

line x - T/2. For Figures lea-c the values of sigma

square which come closest to symmetry are 18, 5, and 1

respectively. Notice also, that in Figures la and

18b, in which the drift/randomizing ratios are low and

sigma square equal to tPn and fiv.e are the values

closest to producing symmetry, the curve +or sigma

square equal to one is very asymmetrical and flattens

out for big t. This occurs because for these low

drift/randomizing ratios, 0 2 = I over-constrains the

process; it forces the target back to the baseline too

soon.

5. Figures 1la-d are different from Figures 16a-d only in

their lambda value which is 3.6 instead of 1.6. It is

immediately clear that an increase in lambda causes a

marked decrease in mean square radial distance. A

similar result was found for the random tour, for which
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an increase in lambda caused the distribution of

radial distance to start piling up around the exp'ected

position of the process. There are some other subtle

differences also. At low V&V ratios, all curves for

the three sigma square values are skewed slightly less

left than for higher lambda, and for higher

drift/randomizing ratios they are skewed sligntly more

right. Notice also that the curves far the lowest

drift/randomizing ratio in Figure Ila are closer

together than they were for the same ratio at

xs1.0 in Figure i~a. This, again, is the result of

all curves being bound on one side by the baseline, and

therefore forced together more at the lower mean square

radial distances which higher lambda proeuces.

Finally, the *hooku on the end of the curves is gone,

most likely because the mean number of turns during the

final time unit is three instead of one. Consequently,

the target turns a few more times during the last time

unit of travel toward the destination and thus does not

rely only on one leg to hit or miss. Again. however,

it is likely that a target would travel directly to

destination at this point anyway, unless it desired to

adhere to its course change policy strictly.
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Chapter I defined a controlled time of arrival scenario

in which a time constraint is placed on a target that is

required to travel between two endpoints. It is desireable

for the target to "randomize" its motion during the transit

in order to provide the enemy with as little information as

possible about target origin and destination and to make

target detection and redetection difficult. Chapter 11

discussed desireable qualities for such target travel and

delineated three measures of effectiveness against which to

measure any procedure for producing target paths, and

Chapter -III examined previous investigations into the problem

which have provided direction for the two approaches adopted

in this thesis. Chapter IV described the random tour with

drift and discrete Brownian-dervied motion in detail, and

while the results for each method were presented in

Chapter V, the performance of a path producing procedure

against the measures of effectiveness is not important in

itself; but rather, the measures provide a way to compare two

or more procedures, one of which can be judged best for a

Iparticular situation.

The amount a target points away from orign or to

destination is very nearly the same for both the random tour

with drift and discrete Brownian-derived motion. Tables 1
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and 4, which list the moan values and standard deviations of

the course deviation distributions, show nearly identical

values for both procedures at low VdY ratios. Differences

begin to show only as the ratio gets bigger. But though the

statistics become more favorable for Brownian-derived motion,

it is probably because that process is not under complete

control of the constraints when the drift/randomizing ratio

is high. 1f it were completely controlled or if the random

tour were also allowed to violate the final visitation

constraint, then the statistics would probably be very nearly

identical over the whole range of V d/Vr ratios.

The failure of Brownian-derived motion to control target

travel by guaranteeing visitation on time at the destination

is a potential weakness of the process; it literally does not

do exactly what it is supposed to do. However, the weakness

is not important just as long as it is not vital for the

target to get excl to destination exactly on time. If it

is vital, then clearly the choice is in favor of the random

tour, and none of the measures of effectiveness are relevant,

except for the requirement that the path *look goodO and be

executable as described in Chapter 11.

If the target does not need to have a perfectly

controlled time of arrival, and can either fall short of its

destination at the appointed time or else take extra time to

get there, then the mean square radial distance becomes the

important measure of effectiveness; pointing to origin and
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destination is similar and representative paths of both

procedures *look good' and are executable. Figures 12a-d

illustrate the mean square radial distance between present

and baseline positions for two sigma square values of

Brownian-derived motion and for the random tour with drift

with and without the requirement for the left and right paths

to match. While the mean square radial distances for random

tour paths which do not match have no practical significance

since such paths meet none of the constraints, they do show

how much radial distance is lost by requiring that the left

and right paths meet. Recall that the loss is. about two per

cent per time unit, and while that sounds low, it is becomes

very significant as time progresses. The figure of two

percent was obtained, as previously described, by linear

regression and is valid only over the range of time for which

the regression was done. This limitation is illustrated in

Figures 12a and 12b. Notice that the curve for matching

random tour paths begins to sag in the middle, when actually

the mean square radial distance should be increasing, however

slightly. The sagging is a direct result of the linear

regression operating at the edge of its valid range. The

curve should be rather flatly rounded in the middle instead

of sagging. However, the curves presented are accurate over

their range, with the exception of the slight sagging as

described. In Figures 12c and 12d, where the time period is

shorter, the curves do not sag at all. Most importantly, all
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four figures show how much mean square radial distance is

lost by requiring the paths to match. Under the conditions

prevailing in Figure 12a, the unconstrained random tour with

drift exhibits a greater mean square radial distance than

Brownian-derived motion does for either sigma square value.

However, the mean square radial distances for the matching

random tour paths are much less than those for Brownian-

dervived motion in all figures. Notice also that while an

increase in the V€er ratio or lambda each cause a reduction

in mean square radial distance for both procedures, that

increasing lambda affects the random tour process much more

adversely than Brownian-derived motion. This is a point in

favor of the Brownian-derived process.

One might argue that it is natural for Brownian-derived

motion to exhibit higher mean square radial distances, if

only because the process is not under control. This argument

is not compelling and one need only to look at the figures to

see the great disparity. It is not likely that the failure

of the mean square radial distance for Brownian motion to go

all the way to zero at the destination is the reason that it

is more than double that of the random tour in the midrange

for three of the four cases. However, one might argue

further that the constraint which requires the left and right

random tour paths to meet up causes such severe degradation,

and that Drown motion might suffer similarly if it could

be made to ,.,*et the constraints exactly. Nonetheless, the
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'5, .' . . .. .. ; , 5--- , .:S-*,.i*". -. *' 5S ' - , - " .L ; - ' " , j ' , : ' } : _ . . i;.. . . . . . . . .. -. , .. - ./



paths perform differently as they are, and clearly the mean

square radial distances are much more favorable for Brownian-

derived motion if the strict breaking of the final visitation

constraint can be tolerated, and remedied.

Recall that the first measure of effectiveness which is

applied to a path producing procedure checks representative

paths to see whether they Olook goodO and are executable by a

candidate target. Failure against this measure automatically

disqualifies a path from further consideration. While both

the random tour with drift and Brownian-dorived motion passed

this vital first test, there is a subtlety in the way both

procedures are executed that makes Brownian-derived motion

more desireable. In order to obtain matching left and right

paths, the random tour must be executed in its entirety

before the target begins a journey. The target must then

follow the instructions closely to make all the correct

courses and turns. While this procedure is possible to carry

out, it is quite exacting. On the other hand, Brownian-

derived motion can be executed one leg at a time because

after each leg the controlled time of arrival problem is

refrained as a totally new one using present position as the

now origin. Hence, perfect navigation is not as critical as

it is for the random tour. In a sense, starting the process

ov'er after each leg always gives the target another chance,

just so long as a flagrant violation does not occur which

4 causes the target to be faced with an impossible transit at
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the beginning of some intermediate leg. This feature of

Brownian-derived motion should make it more saleable to

target captains.

Both methods for producing paths should be available for

a target to choose. Clearly, if the final visitation

constraint absolutely must be met on time, then the random

tour with drift method provides the only guarantee. But, if

the target needs only to ensure that it arrives in the

immediate vicinity of the destination or may arri'e at the

actual destination slightly early or late, then discrete

Brownian-derived motion performs more favorably against the

selected measures of effectiveness and is easier for a target

to execute.

The two very different methods presented here for

generating paths represent only two among many, and the

variations on these two procedures alones are infinite. For

instance, the random tour with drift could be modified so

that it was executed from one end only, instead of from both

ends as done in this thesis. After each leg of travel the

problem could be reframed as a totally new one, in much the

same manner that Brownian-derived motion was restarted after

each leg here. It is also quite possible, and desireable, to

devise a way to force Brownian-derived motion to arrive at

the destination exactly on time, satisfying all the

constraints strictly. Thus, the two methods presented here
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are not only quite workable, but also provide suggestions

for further investigation.
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